Patient-Reported Outcomes

Christopher Friese, PhD, RN

AGENDA

- Overview of PROs (and Cons) of PROs Friese
- (Video) Discussion with Alex Chong,
 Center for Medicare & Medicaid Innovation
- Panel Discussion
- Q & A, Discussion
- Polling questions via your phone

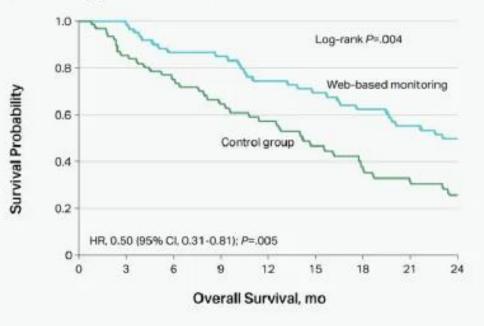
PROs (and Cons) of PRO Reporting

Christopher R. Friese, PhD, RN

The Evidence Base for PROs

- Basch, et al. Patient vs. Clinician Reporting:
 - -Patients report toxicities at higher severity
 - -Clinicians miss some PROs
 - -PROs reported sooner in the course of treatment
 - -E-PRO monitoring associated with lower mortality

Figure 3. Evidence from two randomized controlled trials demonstrating overall survival benefits when integrating patient-reported outcomes into routine cancer care


Two-year survival comparing web-based symptom monitoring vs routine surveillance following treatment for lung cancer⁷

Source: JAMA 2017;318:197 and JAMA 2019;321:306.

Overall survival among patients with metastatic cancer assigned to electronic patient-reported symptom monitoring during routine chemotherapy vs usual care⁸

Practice-based sampling

- Local community-based oncology practices (5 offices)
- Patient-reported outcomes for the 3 weeks after first cycle chemo
 - Frequency/severity of toxicities (did not occur to very severe)
 - Unplanned service use (clinic visit, ED, admission)
- Distress thermometer (0-10)
- Patient demographics and clinical data
- Recruited 106 for planned 100 patients
 - 43% breast cancer, 26% Stage III, 31% Stage IV

Harrison, et al., J Oncol Prac 2016

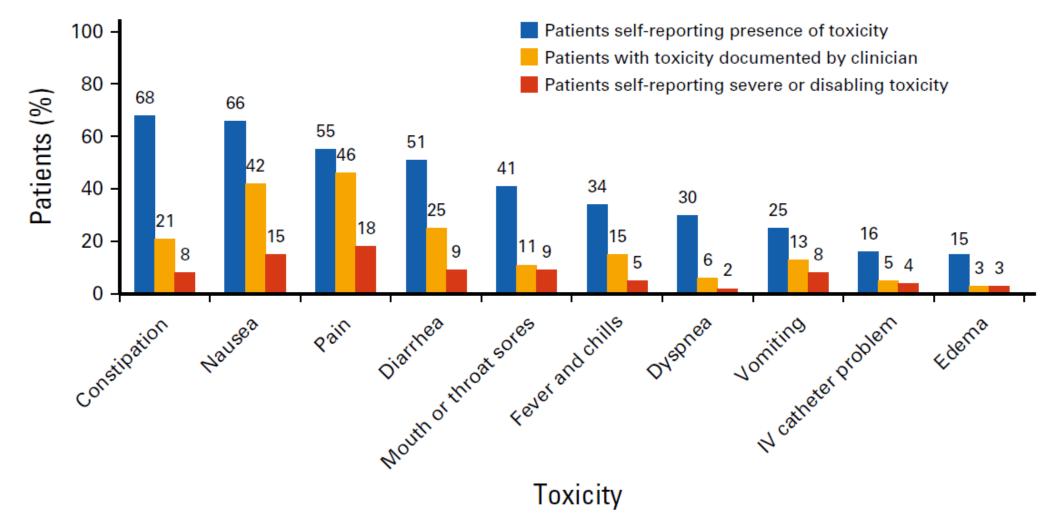
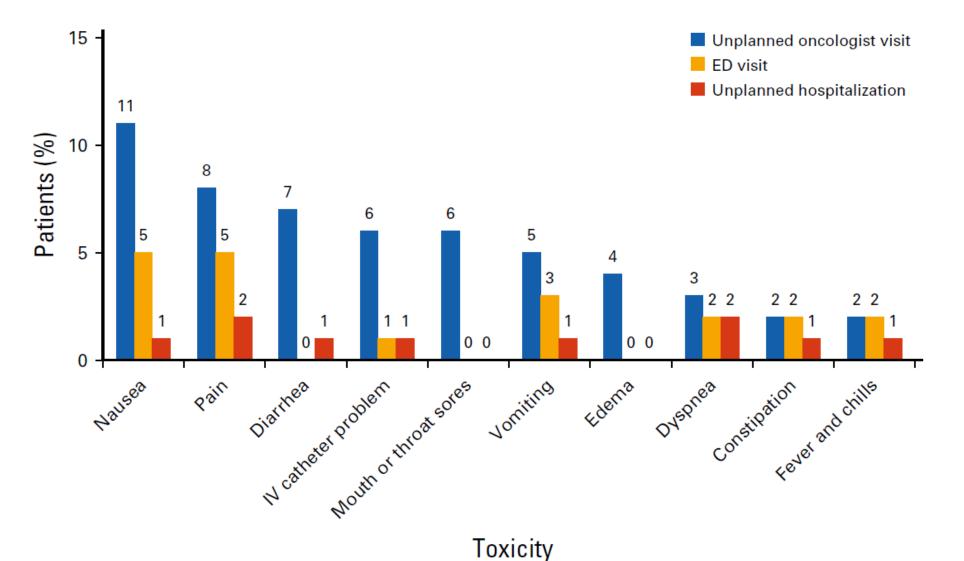



FIG 1. Frequency of patient-reported chemotherapy toxicities. IV, Intravenous.

Harrison, et al., J Oncol Prac 2016

FIG 2. Frequency of patient-reported unplanned service use for chemotherapy toxicities. ED, emergency department; IV, Intravenous.

Harrison, et al., J Oncol Prac 2016

Project summary

- Clinically significant toxicities in the first cycle of chemotherapy
- Toxicities associated with unplanned health care service use
- Toxicities associated with higher patient distress
- Data were used to develop management algorithms
- New payment models informed by these data

ONCOLOGY COMMUNICATION, TECHNOLOGY, AND ADVERSE EVENTS STUDY (OCTET)

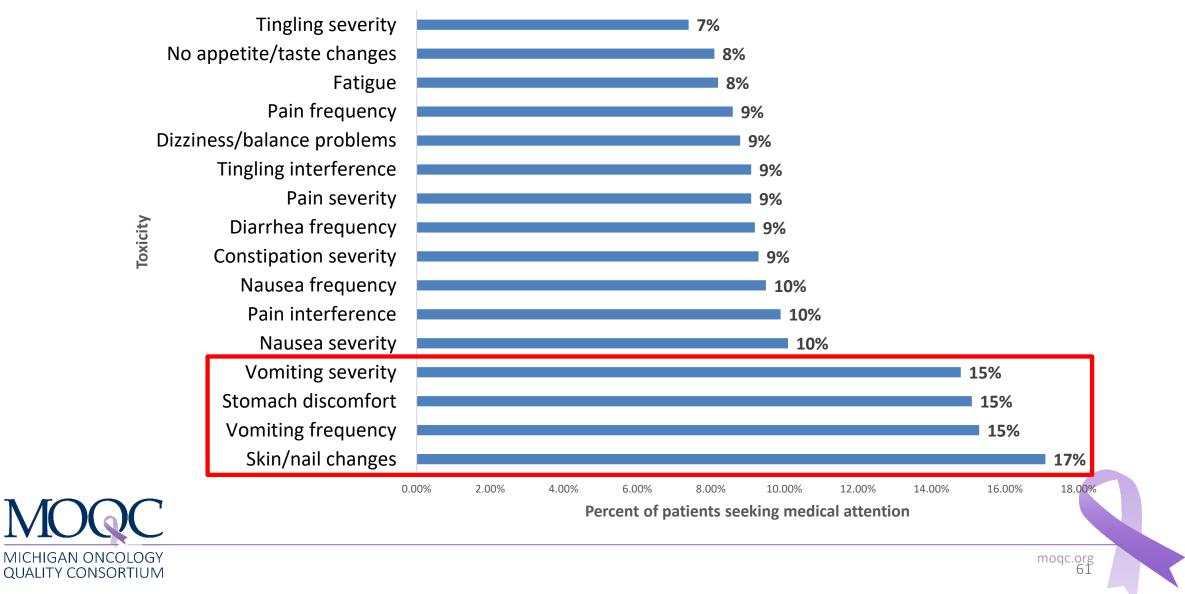
Investigators

Christopher R. Friese, PhD, RN, AOCN[®], FAAN Milisa Manojlovich, PhD, RN, CCRN Molly Harrod, PhD Kai Zheng, PhD Jennifer J. Griggs, MD, MPH, FACP, FASCO

Research Funding: Agency for Healthcare Research and Quality R01-HS-024914

Patient-Reported Outcomes (PROs) Data

- 29 practices participated, 2,232 patients
- Six-week data collection schedule
- Eligible patients: receiving intravenous chemotherapy
- Complete survey assessing toxicities in past <u>seven</u> days using valid & reliable PRO-CTCAE (converts CTCAE to patient-reported version)
- Nausea, Vomiting, Constipation, Diarrhea, Neuropathic Pain, General Pain, + two write-in options; 5-point scale (severity ± frequency)
- Self-reported unscheduled clinic visits, ED visits, inpatient admission


PROs Data: Key Findings

- 453 (20%) of patients reported one toxicity as severe/very severe
- 156 (7%) of patients sought medical attention for a toxicity
 - Mean severity of worst toxicity was 2, which is < than CTCAE grade 3.
- Frequent write-ins: Fatigue, Vague GI Sx, Skin/Nail Changes
- Next slide: toxicities aligned with excess service use: some surprises?

Chemotherapy Toxicities and Service Use

Patient-reported outcomes collected in ambulatory oncology practices: Feasibility, patterns, and correlates

Paper survey of 2,245 adult patients w/ cancer in 29 practices Friese, et al., Health Serv Res, 2020

doi.org/10.1111/1475-6773.13574

We acknowledge www.MOQC.org as project partners and AHRQ for Research Funding

JAMA

QUESTION In patients undergoing treatment for metastatic cancer, does electronic symptom monitoring improve patient-reported outcomes?

CONCLUSION Use of weekly electronic patient-reported outcome (PRO) surveys to monitor symptoms resulted in statistically significant improvements in physical function, symptom control, and health-related quality of life (HRQOL) at 3 months vs usual care among patients with metastatic cancer.

POPULATION

694 Women 496 Men

Adults receiving treatment for metastatic cancer

Mean age: 62 years

INTERVENTION

8-8-

PRO intervention

593

598 Control Usual care

Weekly electronic patient survey asking about symptoms, performance status, and falls

OUTCOMES

Secondary outcomes were change from baseline in physical function, symptom control, and HRQOL at 3 months, measured by the EORTC QLQ-C30 instrument. Results on the primary outcome, overall survival, are not yet available.

FINDINGS

Change in physical function, symptom control, and HRQOL (score range, 0-100 points) from baseline to 3 months

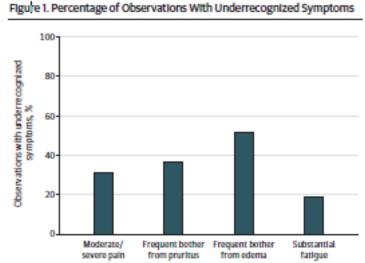
ID AMA

	PRO intervention	Control		
Physical function	Baseline 3 mo 74.27 ► 75.81	Baseline 3 mo 73.54 ► 72.61		
Symptom control	77.67 80.03	76.75 🕨 76.55		
HRQOL	78.11 > 80.03	77.00 ▶ 76.50		

Mean differences were significant: Physical function, 2.47 points (95% CI, 0.41 to 4.53); P=.02 Symptom control, 2.56 points (95% CI, 0.95 to 4.17); P = .002 HRQOL, 2.43 points (95% CI, 0.90 to 3.96); P = .002

Basch E, Schrag D, Henson S, et al. Effect of electronic symptom monitoring on patient-reported outcomes among patients with metastatic cancer: a randomized clinical trial. JAMA. Published online June 5, 2022. doi:10.1001/jama.2022.9265

Now, for the CONS


- Workflow challenges
- Training + supporting overworked clinical teams
- Integration with electronic health records
- What can/will clinicians do with the data?
- MOQC challenge: feasibility and acceptability across diverse practices
- MOQC challenge: diverse patient populations

Local Examples

- MROQC (Radiation Oncology): Paper-based mostly, 2 projects with Qualtrics, not linked to EHR
- MUSIC (Urology): Web-based survey, portal for surgeons, register in practice → email surveys <u>https://musicurology.com/programs/prostate/pro/</u>

June 17, 2022

Patient-Reported Outcomes in Cancer Care (PROMOnc)

MOQC Biannual Meeting

Rachel Brodie

Senior Director, Measurement & Accountability

Purchaser Business Group on Health

The Need

- PROMs in patients treated with curative intent
- Measures to improve delivery of cancer care
- May support accountability & value-based payment

PROMOnc Measures

Selected with POQC input

PROMIS measures important to patients in survivorship

- HRQoL (mental & physical health)
- Pain interference
- Fatigue

Deployed in MOQC sites (N = 16) and Alliance of Dedicated Cancer Centers (ADCC)

Key Findings: Measure Denominator

Eligible patients Age ≥ 18 and over Breast cancer stages I-III OR Colon cancer stages II – III OR NSCLC stages I-IIIA AND receiving a first chemotherapy regimen n=1752 from 21 sites

16 MOQC sites participated13 submitted data3 had sufficient numbers of participants.

Sites that had 5 or more follow-up surveys completed

n=1520 from 10 sites

Patients included for data analysis

n=1366

Measure Cohort: Patients who completed the follow-up survey n=354

Denominator Exclusions

- On a therapeutic clinical trial (n=75)
- Recurrence/disease progression (n=38)
- Left practice (n=24)
- Died during the follow-up period (n=23)

Survey Completion

- Baseline survey, N = 721
- Follow up survey, N = 354
- Both surveys, N = 185

Test Site Enrollment and Survey Completion

	Number of Eligible	Number of Patients in Denominator	Number of Patients Completing Survey Both		
Site	Patients	Cohort	Baseline	Follow-Up	Surveys
ADCC 1	70	65	10	7	3
ADCC 2	218	187	141	41	40
ADCC 3	355	328	178	9	7
ADCC 4	413	369	183	70	41
ADCC 5	202	176	63	49	26
ADCC 6	169	155	74	59	34
ADCC 7	30	28	24	8	7
MOQC 1	24	20	14	12	8
MOQC 2	22	21	19	13	12
MOQC 3	17	17	15	7	7
Total	1520	1366	721	275	185

Group Level Performance Measure Scores

	Mean Group Performance Score	SD	Min	Max	Inter-Unit Reliability	Number of Patients/Group Needed to Achieve .7 Reliability
Pain Interference	50	2.8	44	54	.77	22
Fatigue	49	3.1	42	53	.77	23
Physical Health	45	2.6	40	50	.53	66

- Mean among group scores that were significantly above or below the average; the mean absolute difference between the group's scores and the overall average is greater than what PROMIS literature cites as a meaningful difference.
- Results indicate that the PRO-PM measures can discriminate between groups' performance.

Key Points from MOQC PRO Task Force

- PROs important to measure
- Interest in straightforward instruments + also assess for social/structural needs
- A hybrid approach to begin (paper + Epro)
- Invite family/caregivers to contribute

A Phased Approach

Early State

- Meet practices where they are
- 3-4 core measures, at conclusion of treatment
- Paper + electronic platforms
- Reports generated by MOQC
- Shared at regular intervals
- Data inform future QI

Future State

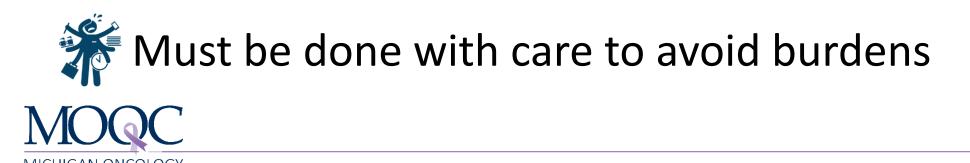
- 100% digital reporting
- Fully-integrated into EHR
- Scored & shared in real-time
- Can adjust timing, questions
- Longitudinal monitoring
- Subgroup analyses
- Caregiver-specific instrument

moqc.org 73

Key Takeaways

Systematic PRO collection, reporting and analysis:

Helps focus clinical interventions



Prioritizes improvement efforts

OUALITY CONSORTIUM

Centers care on patient + family needs

Conversation with Dr. Alex Chong

moqc.org

VIDEO https://youtu.be/-YO6ommLJL8

Table Discussions

Group A

- 1. What does collecting PROs make possible?
- 2. PROs can be collected to inform <u>clinical care</u> <u>delivery</u> or to strengthen <u>quality improvement</u> efforts. Which rationale makes the most sense for us to pursue at MOQC? What are the pros and cons of each approach?
- 3. What are your thoughts on the *format(s)* to collect PROs data? Is there any approach you have used that was particularly effective?
- 4. How would you want the PRO data to be shared with the practice?

Group B

- 1. What does collecting PROs make possible?
- 2. PROs can be collected to inform <u>clinical care</u> <u>delivery</u> or to strengthen <u>quality improvement</u> efforts. Which rationale makes the most sense for us to pursue at MOQC? What are the pros and cons of each approach?
- 3. What challenges do you foresee in implementing the collection of PROs?
- 4. Of all the PROs you have heard about, which ones would help cancer care teams help patients the most?

moqc.org

Group Q & A, Discussion

moqc.org